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Abstract: In the paper the Bayesian and the least squares methods of quantum state 
estimation are compared for a single qubit. The quality of the estimates is compared 
by computer simulation when the true state is either mixed or pure. The fidelity is 
used to quantify the estimation error. Both methods are sensitive to the degree of the 
purity of the state to be estimated, that is, their performance can be quite bad near 
pure states. 
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1. INTRODUCTION 
 
Quantum mechanics is one of the most interesting fields in modern physics. In spite of its 
great importance related to quantum computers and quantum information theory, just a few 
persons have tried to apply the tools of advanced systems and control theory to quantum 
systems. Due to some similarities with X-ray tomography, the state reconstruction is often 
called quantum tomography. 
 
The methods of classical statistical estimation are used to develop state estimation of 
quantum systems in the first group of papers (D’Ariano, et al., 2003; Řehaček, et al., 2004). 
This approach suffers from the fact that the state estimation is usually based on a few types of 
measurements (observables) that are incompatible, thus there is no joint probability density 
function of the measurement results in the classical sense. 
 
The other way of computing a point estimate of the state of a quantum system is to use 
convex optimization methods such as in (Kosut, et al., 2004). Here one can respect the 
constraints imposed on the components of the state but there is no information on the 
probability distribution of the estimate. 
 
The aim of this paper is to work out a type of Bayesian quantum state estimation as a 
statistical method that respects the constraints on Bloch vectors and compare it with the least 
squares (LS) method as an optimization-based method by using simulation experiments.  
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2. BASIC NOTIONS 
 
The simplest system in quantum mechanics is the two-level system that represents a spin½ 
particle, a quantum bit, or shortly a qubit. We illustrate the notions on this example, as the 
quantum state estimation methods will also be developed for this simple quantum system. 
 
2.1 State representation of quantum systems 
 
The state of a quantum system is described by density matrices which are statistical operators 
(positive operators of trace 1) acting on the underlying Hilbert space. The Hilbert space 
associated to a qubit is 2 with the usual inner product. The Pauli matrices 
 

(1) 
 
 
form a basis among the self-adjoint operators over 2. A density matrix written up in the 
above basis (1) gives 
 

(2) 
 

(3) 
 
Therefore, one can represent the state of this system by a 3-dimensional real vector (a so 
called Bloch vector): 

(4) 
 
with length less than or equal to 1. The algebraic constraint (3) is equivalent to the fact that ρ 
is positive semidefinite. The state space of this system is the unit sphere, which is also called 
Bloch ball. 
 
2.2 Observables 
 
To each dynamical variable one associates a self-adjoint operator A = A* of the underlying 
Hilbert space, that is called an observable. Because of its self-adjoint property, the operator 
admits a spectral decomposition: 
 

(5) 
 
where λi are the different eigenvalues and Pi are pairwise orthogonal eigenprojections. 
Measuring the above observable the possible outcomes are λi, i = 1,...,n with the following 
probabilities 
 

(6) 
supposed that the system is in state ρ. It can be shown that 
 

(7) 
 
so the different outcomes of the measurement form a probability distribution. The mean value 
of the measurement for the observable A is 
 

(8) 
 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

10
01

,
0

0
,

01
10

,
10
01

3210 σσσσ
i

i
 

,1)( =∑
i

iP λ

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia



 

     3

( )ii IP σ±=±

2
1

{ } .3,2,1,,1:)( === injjDD n
i

n
i K

( ) ( ).1
2
11

2
1)()1)((Pr iii

n
i sPTrjDob +=+=== +

ρ
σρ  

)()(: −−+= iii πππ

( ) ,2),()( 22
3

1

22 ππππω ssssdL
j

jj −+=−== ∑
=

 

.1..
)(
≤sts

LMinimize ω

.
π
π

=s

 
 
3. QUANTUM STATE ESTIMATION 
 
For the state estimation, we will consider 3n identical copies of qubits being in the state ρ. 
We measure all three Pauli spin matrices {σ1, σ2, σ3} on all n copies. The possible outcomes 
for each of these single measurements, i.e. the eigenvalues of σi, are ±1 and the 
corresponding spectral projections are given by 
 

(9) 
 
For the sake of definiteness, we assume that first σ1 is measured n times, then σ2 and then σ3. 
The data set of the outcomes of this measurement scheme consists of three strings of length n 
with entries ±1: 

(10) 
 
The predicted probabilities of the outcomes depend on the true state ρ of the system and they 
are given by 

(11) 
 
 
2.1 Least Squares estimation 
 
Let πi(±) be the relative frequency of ±1 in the string Di

n, then the difference 
 

(12) 
is an estimate of the i-th spin component si (i = 1, 2, 3). As a measure of unfit (estimation 
error) we use the Hilbert-Schmidt norm of the difference between the empirical and the 
predicted data according to the least squares (LS) principal. (Note that in this case the 
Hilbert-Schmidt norm is simply the Euclidean distance in the 3-space.) Then the following 
loss function is defined: 

(13) 
 
 

where s is the Bloch vector of the density operator ω. 
 
An estimate of the unknown parameter vector s = [s1, s2, s3]T is obtained by solving the 
following constrained quadratic optimization problem: 

 
(14) 

   
The above loss function is simple so we can solve the constrained minimization problem 
explicitly. In the unconstrained minimization, two cases are possible. First, ||π|| ≤ 1, and in 
this case the constrained minimum is taken at s = π. When the unconstrained minimum is at π 
with ||π|| > 1, then it is clear from the 3-dimensional geometry that the constrained minimum 
is taken at 

(15) 
 
 
2.1 Bayesian quantum state estimation 
 
In the Bayesian parameter estimation, the parameters θ to be estimated are considered as 
random variables. The probability P(θ | Dn) of a specific value of the parameters conditioned 
on the measured data Dn is evaluated. Afterwards, the mean value of this distribution can be 
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used as the estimate. If the measured data is a sequence of outcomes, as in our case, it can be 
split into the latest outcome Dn(n) of Dn and Dn−1, the preceding. Then the conditional 
distribution of the parameter becomes P(θ | Dn(n),Dn−1) and the Bayes formula 
 

(16) 
 
can be applied resulting in the following recursive formula for P(θ|Dn) 
 

(17) 
 
In our state estimation, we have three data sets Di

n, i = 1, 2, 3, corresponding to the three 
directions. The estimation is performed for the three directions independently (afterwards a 
conditioning has to be made). 
 
The probabilities P(Di

n(n) | Di
n-1,θ) have the form 

(18) 
 
If we denote by ℓ(i) the number of +1’s in the data string Di

n , then (17) becomes 
 
 

(19) 
 
 
 
where Pi

0(ν) is an assumed prior distribution, with which the recursive estimation is started. 
For the sake of simplicity we assume that Pi

0(ν) has the same form with parameters κ and λ in 
place of n and ℓ, respectively. 
 
After a parameter transformation, it appears to be a β-distribution 
 

(20) 
 
where C is the normalization constant and u œ [0, 1]. It is well known that the mean value of 
this distribution is 

(21) 
 
and its variance is 
 

(22) 
 
The above statistics (21, 22) is suited to construct an unbiased estimate for si, in the form 
 

(23) 
 
after the re-transformation of the variables. 
 
Since the components of the Bloch vector are estimated independently, the constraint (3) has 
not been taken into account yet. Thus, a further step of conditioning is necessary. We simply 
condition (ŝ1, ŝ2, ŝ3) to (3): 
 

(24) 
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Figure 1:  pure state 
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Figure 2:  mixed state 
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where both integrals are over the domain {(u1,u2,u3): u1
2+u2

2+u3
2 ≤ 1} and f(ui) = 

P(si|Di
n)(ui). Then the conditioned estimate of si will be 

  
 
 
3. EXPERIMENTS 
 
The aim of the following experiments is to compare the properties of the two methods 
described above. The base data of the estimation is obtained by measuring spin components 
σ1, σ2, and σ3 of several qubits being in the same state (i.e. having the same Bloch vectors). 
The Bayesian method was applied with and without regularization to analyze its influence. 
The measurements were performed on a quantum simulator implemented in MATLAB for 
two level systems. An experiment setup consisted of a Bloch vector s to be estimated and a 
number (n) of spin measurements performed on the quantum system. Each experiment setup 
was repeated five times and the performance indicator quantity (the fidelity of the estimation 
error) was averaged. 
The fidelity of two density operators ρ and ω is defined as 
 

(25) 
 
3.1 Number of measurements 
 
The first set of experiments was to investigate the dependence between the fidelity (25) and 
the number of measurements n. It was expected that the fidelity goes to 1 when n goes to 
infinity. Fig. 1 shows the experimental results for estimating a pure state spure = [0.5774, 
0.5774, 0.5774]T . The result of the Bayesian estimation (dotted line) shows the weakest 
performance because of the conditioning feature of the method. The price of the validity of 
the Bayesian method with conditioning is the precision for (near) pure states. It is apparent 
that the least squares estimation does not have the above problem. 
 
The situation is different for estimating mixed states (smixed = [0.3, −0.4, 0.3]T). It can be seen 
in Fig. 2 that the two kinds of Bayesian estimation differ only for small n’s. Least squares 
method also works a little bit better for mixed states than for pure states, at least for larger 
n’s. It is apparent that pure states are a challenge for both methods but least squares handles 
this difficulty a bit better. 
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Figure 4:  n=900 

3.2 Bloch vector length 
 
During the second set of experiments, the length of the Bloch vector was varying. Its 
direction was s = [0.5774, 0.5774, 0.5774]T. The expectation was that the fidelity would be 
relatively independent of the Bloch vector length ||s||. The experiment results are plotted in 
Fig. 3 and Fig. 4. The first picture shows the case n = 100, where, in spite of the big variance, 
the conditioned Bayesian shows an increase near the pure state (||s|| = 1). At n = 900 (shown 
in Fig. 4) it is more apparent that LS and conditioned Bayesian methods (both have certain 
conditioning feature to avoid faulty estimates near ||s|| = 1) have worse performance near 
pure states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. CONCLUSIONS 
 
The performance of two state estimation methods, the Bayesian state estimation as a 
statistical method and the least squares (LS) method as an optimization-based method is 
investigated in this paper by using simulation experiments. The fidelity is used as a 
performance indicator quantity.  
 
The investigated methods were found to be quite sensitive to the length of the Bloch vector, 
i.e. to the fact if a pure or mixed state was the one to be estimated. The methods that are not 
informed about the purity of the state can perform quite badly if they are used to estimate a 
pure state or a ”nearly pure” state. It seems that the way of conditioning is critical for the 
methods capable of estimating both pure and mixed states. The simple length constraint of 
the least squares method works rather effectively, thus a version of the Bayesian estimation 
method with LS-type constraining is a good candidate of an improved stochastic state 
estimation method. 
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